

Welcome to django mail admin’s documentation!

Contents:

	Django Mail Admin
	Features

	Documentation

	Quickstart

	Custom Email Backends

	Optional requirements

	FAQ

	Running Tests

	Credits

	Usage
	Template variables & tags

	mail.send()

	send_many()

	Management Commands

	Logging

	Django Admin integration

	Settings
	Settings for outgoing email

	Settings for incoming email

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.1 (2017-12-29)

	0.1.0 (2017-12-29)

Django Mail Admin

[image: _images/django_mail_admin.svg]
 [https://badge.fury.io/py/django_mail_admin][image: _images/django_mail_admin1.svg]
 [https://travis-ci.org/delneg/django_mail_admin][image: _images/badge.svg]
 [https://codecov.io/gh/delneg/django_mail_admin]The one and only django app to receive & send mail with templates and multiple configurations.

Features

	Everything django-mailbox has

	Everything django-post-office has

	Database configurations - activate an outbox to send from, activate a mailbox to receive from

	Templates

	Translatable

	Mailings - using send_many() or ‘cc’ and ‘bcc’ or even recipients - all of those accept comma-separated lists of emails

Dependencies

	django >= 1.9 [http://djangoproject.com/]

	django-jsonfield [https://github.com/bradjasper/django-jsonfield]

Documentation

The full documentation is at https://django_mail_admin.readthedocs.io.

Quickstart

Q: What versions of Django/Python are supported?
A: Take a look at https://travis-ci.org/delneg/django_mail_admin

Install django mail admin:

pip install django_mail_admin

Add it to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'django_mail_admin',
 ...
)

	Run migrate:

python manage.py migrate django_mail_admin

	Set django_mail_admin.backends.CustomEmailBackend as your EMAIL_BACKEND in django’s settings.py:

EMAIL_BACKEND = 'django_mail_admin.backends.CustomEmailBackend'

	Set cron/Celery/RQ job to send/receive email, e.g.

* * * * * (cd $PROJECT; python manage.py send_queued_mail --processes=1 >> $PROJECT/cron_mail.log 2>&1)
* * * * * (cd $PROJECT; python manage.py get_new_mail >> $PROJECT/cron_mail_receive.log 2>&1)
0 1 * * * (cd $PROJECT; python manage.py cleanup_mail --days=30 >> $PROJECT/cron_mail_cleanup.log 2>&1)

Note

Once you have entered a mailbox to receive emails, you can easily verify that you
have properly configured your mailbox by either:

	From the Django Admin, using the ‘Get New Mail’ action from the action
dropdown on the Mailbox changelist

	Or from a shell opened to your project’s directory, using the
get_new_mail management command by running:

python manage.py get_new_mail

If you have also configured the Outbox, you can verify that it is working, e.g.

from django_mail_admin import mail, models

mail.send(
 'from@example.com',
 'recipient@example.com', # List of email addresses also accepted
 subject='My email',
 message='Hi there!',
 priority=models.PRIORITY.now,
 html_message='Hi there!',
)

Custom Email Backends

By default, django_mail_admin uses custom Email Backends that looks up for Outbox models in database. If you want to
use a different backend, you can do so by configuring BACKENDS, though you will not be able to use Outboxes and will have to set EMAIL_HOST etc. in django’s settings.py.

For example if you want to use django-ses [https://github.com/hmarr/django-ses]:

DJANGO_MAIL_ADMIN = {
 'BACKENDS': {
 'default': 'django_mail_admin.backends.CustomEmailBackend',
 'smtp': 'django.core.mail.backends.smtp.EmailBackend',
 'ses': 'django_ses.SESBackend',
 }
}

You can then choose what backend you want to use when sending mail:

If you omit `backend_alias` argument, `default` will be used
mail.send(
 'from@example.com',
 ['recipient@example.com'],
 subject='Hello',
)

If you want to send using `ses` backend
mail.send(
 'from@example.com',
 ['recipient@example.com'],
 subject='Hello',
 backend='ses',
)

Optional requirements

	django_admin_row_actions for some useful actions in the admin interface

	requests & social_django for Gmail

FAQ

Q: Why did you write this?

A: In order to get both email sending & receiving you’ll have to install post_office AND django_mailbox.
Even if you do, you’ll have to work on admin interface for it to look prettier, somehow link replies properly etc.
So I’ve decided merging those two and clearing the mess in between them as well as adding some other useful features.

Q: Why did you remove support for Python 2?

A: Because f*ck python2. Really, it’s been 9 (NINE!) years since it came out. Go ahead and check out https://github.com/brettcannon/caniusepython3

Q: Why is it named django_mail_admin, what does it have to do with admin ?

A: Well, the first version of this package (which was living just in a really large admin.py) was used for easy mail management using standard Django admin interface.

Q: What languages are available?

A: Currently there’s Russian and English languages available. Feel free to add yours:

source <YOURVIRTUALENV>/bin/activate
python manage.py makemessages -l YOUR_LOCALE -i venv
python manage.py compilemessages -l YOUR_LOCALE

Q: Why did you delete support for multi-lingual templates?

A: Well, we have django-model-translations for that. You can easily fork this app and override EmailTemplate model (models/templates.py) accordingly.
I think there’s no need for such an overhead in a mail-related app.

Q: I don’t want my outgoing emails to be queued for sending after saving them in the admin interface, what do i do?

A: Just override OutgoingEmailAdmin’s save_model method.

Q: Can i get in touch with you? I want a new feature to be implemented/bug fixed!

A: Feel free to reach me out using issues and pull requests, I’ll review them all and answer when I can.

Running Tests

Does the code actually work?

source <YOURVIRTUALENV>/bin/activate
(myenv) $ pip install tox
(myenv) $ tox

Credits

Tools used in rendering this package:

	Cookiecutter [https://github.com/audreyr/cookiecutter]

	cookiecutter-djangopackage [https://github.com/pydanny/cookiecutter-djangopackage]

Usage

After you’ve installed Django Mail Admin:

Send a simple email is really easy:

from django_mail_admin import mail, models

mail.send(
 'from@example.com',
 'recipient@example.com', # List of email addresses also accepted
 subject='My email',
 message='Hi there!',
 priority=models.PRIORITY.now,
 html_message='Hi there!',
)

If you want to use templates: create an
EmailTemplate instance via admin or manually and do the following:

from post_office import mail, models

template = models.EmailTemplate.objects.create(name='first', description='desc', subject='{{id}}',
 email_html_text='{{id}}')
email = mail.create('from@example.com',
 'recipient@example.com', # List of email addresses also accepted
 template=template,
 priority=models.PRIORITY.now)

models.TemplateVariable.objects.create(name='id', value=1, email=email)
models.OutgoingEmail.objects.get(id=email.id).dispatch() # re-get it from DB for template variable to kick in, not needed when sending emails from queue via cron/celery/etc.
OR
mail.send('from@example.com',
 'recipient@example.com', # List of email addresses also accepted
 template=template,
 priority=models.PRIORITY.now,
 variable_dict={'id': 1})

Template variables & tags

Django mail admin supports Django’s template tags and variables.
It is important to note, however, that due to usage of TemplateVariable db-model,
only strings can be stored as value, and anything in the template will be treated as a string.

For example, 'foo': [5,6] when called in template as {{ foo|first }} will result in [,
not in 5. Please keep this in mind.

As an example of usage, if you put “Hello, {{ name }}” in the subject line and pass in
{'name': 'Alice'} as variable_dict, you will get “Hello, Alice” as subject:

from post_office import mail, models

models.EmailTemplate.objects.create(
 name='morning_greeting',
 subject='Morning, {{ name|capfirst }}',
 content='Hi {{ name }}, how are you feeling today?',
 html_content='Hi {{ name }}, how are you feeling today?',
)

mail.send(
 'from@example.com',
 'recipient@example.com', # List of email addresses also accepted
 template=template,
 priority=models.PRIORITY.now,
 variable_dict={'name': 'alice'})
)

This will create an email with the following content:
subject = 'Morning, Alice',
content = 'Hi alice, how are you feeling today?'
content = 'Hi alice, how are you feeling today?'

mail.send()

mail.send is the most important function in this library, it takes these
arguments:

	Argument

	Required

	Description

	recipients

	No

	list of recipient email addresses

	sender

	Yes

	Defaults to settings.DEFAULT_FROM_EMAIL,
display name is allowed (John <john@a.com>)

	subject

	No

	Email subject (if template is not specified)

	message

	No

	Email content (if template is not specified)

	html_message

	No

	HTML content (if template is not specified)

	template

	No

	EmailTemplate instance

	cc

	No

	list emails, will appear in cc field

	bcc

	No

	list of emails, will appear in bcc field

	attachments

	No

	Email attachments - A dictionary where the keys
are the filenames and the values are either:

	files

	file-like objects

	full path of the file

	variables_dict

	No

	A dictionary, used to render templated email

	headers

	No

	A dictionary of extra headers on the message

	scheduled_time

	No

	A date/datetime object indicating when the email
should be sent

	priority

	No

	high, medium, low or now
(send_immediately)

	backend

	No

	Alias of the backend you want to use.
default will be used if not specified.

Here are a few examples.

If you just want to send out emails without using database templates. You can
call the send command without the template argument.

from django_mail_admin import mail

mail.send(
 'from@example.com',
 ['recipient1@example.com'],
 subject='Welcome!',
 message='Welcome home, {{ name }}!',
 html_message='Welcome home, {{ name }}!',
 headers={'Reply-to': 'reply@example.com'},
 scheduled_time=date(2019, 1, 1),
 variables_dict={'name': 'Alice'},
)

django_mail_admin is also task queue friendly. Passing now as priority into
send_mail will deliver the email right away (instead of queuing it),
regardless of how many emails you have in your queue:

from django_mail_admin import mail, models

mail.send(
 'from@example.com',
 ['recipient1@example.com'],
 template=models.EmailTemplate.objects.get(name='welcome'),
 variables_dict={'foo': 'bar'},
 priority='now',
)

This is useful if you already use something like django-rq [https://github.com/ui/django-rq]
to send emails asynchronously and only need to store email related activities and logs.

If you want to send an email with attachments:

from django.core.files.base import ContentFile
 from django_mail_admin import mail, models

mail.send(
 ['recipient1@example.com'],
 'from@example.com',
 template=models.EmailTemplate.objects.get(name='welcome'),
 variables_dict={'foo': 'bar'},
 priority='now',
 attachments={
 'attachment1.doc': '/path/to/file/file1.doc',
 'attachment2.txt': ContentFile('file content'),
 'attachment3.txt': { 'file': ContentFile('file content'), 'mimetype': 'text/plain'},
 }
)

send_many()

send_many() is much more performant (generates less database queries) when
sending a large number of emails. send_many() is almost identical to mail.send(),
with the exception that it accepts a list of keyword arguments that you’d
usually pass into mail.send():

from from django_mail_admin import mail

first_email = {
 'sender': 'from@example.com',
 'recipients': ['alice@example.com'],
 'subject': 'Hi!',
 'message': 'Hi Alice!'
}
second_email = {
 'sender': 'from@example.com',
 'recipients': ['bob@example.com'],
 'subject': 'Hi!',
 'message': 'Hi Bob!'
}
kwargs_list = [first_email, second_email]

mail.send_many(kwargs_list)

Attachments are not supported with mail.send_many().

Management Commands

	send_queued_mail - send queued emails, those aren’t successfully sent
will be marked as failed. Accepts the following arguments:

	Argument

	Description

	--processes or -p

	Number of parallel processes to send email.
Defaults to 1

	--lockfile or -L

	Full path to file used as lock file. Defaults to
/tmp/post_office.lock

	cleanup_mail - delete all emails created before an X number of days
(defaults to 90).

	Argument

	Description

	--days or -d

	Number of days to filter by.

	get_new_mail - receive new emails for all mailboxes or, if any args passed - filtered, e.g.:

python manage.py get_new_mail `test`

Set cron/Celery/RQ job to send/receive email, e.g.

* * * * * (cd $PROJECT; python manage.py send_queued_mail --processes=1 >> $PROJECT/cron_mail.log 2>&1)
* * * * * (cd $PROJECT; python manage.py get_new_mail >> $PROJECT/cron_mail_receive.log 2>&1)
0 1 * * * (cd $PROJECT; python manage.py cleanup_mail --days=30 >> $PROJECT/cron_mail_cleanup.log 2>&1)

If you use uWSGI as application server, add this short snipped to the
project’s wsgi.py file:

from django.core.wsgi import get_wsgi_application

application = get_wsgi_application()

add this block of code
try:
 import uwsgidecorators
 from django.core.management import call_command

 @uwsgidecorators.timer(10)
 def send_queued_mail(num):
 """Send queued mail every 10 seconds"""
 call_command('send_queued_mail', processes=1)

except ImportError:
 print("uwsgidecorators not found. Cron and timers are disabled")

Alternatively you can also use the decorator @uwsgidecorators.cron(minute, hour, day, month, weekday).
This will schedule a task at specific times. Use -1 to signal any time, it corresponds to the uWSGI
in cron.

Please note that uwsgidecorators are available only, if the application has been started
with uWSGI. However, Django’s internal ./manage.py runserver also access this file,
therefore wrap the block into an exception handler as shown above.

This configuration is very useful in environments, such as Docker containers, where you
don’t have a running cron-daemon.

Logging

You can configure Django Mail Admin’s logging from Django’s settings.py. For example:

LOGGING = {
 "version": 1,
 "disable_existing_loggers": False,
 "formatters": {
 "django_mail_admin": {
 "format": "[%(levelname)s]%(asctime)s PID %(process)d: %(message)s",
 "datefmt": "%d-%m-%Y %H:%M:%S",
 },
 },
 "handlers": {
 "django_mail_admin": {
 "level": "DEBUG",
 "class": "logging.StreamHandler",
 "formatter": "django_mail_admin"
 },
 # If you use sentry for logging
 'sentry': {
 'level': 'ERROR',
 'class': 'raven.contrib.django.handlers.SentryHandler',
 },
 },
 'loggers': {
 "django_mail_admin": {
 "handlers": ["django_mail_admin", "sentry"],
 "level": "INFO"
 },
 },
}

Django Admin integration

Integration with Django Admin interface is provided.
In there, you can send & receive emails, configure Outbox’es and Mailbox’es,

and if you’ve installed django-admin-row-actions you will have easy access to many features.

The admin interface integration will only be enabled if DJANGO_MAILADMIN_ADMIN_ENABLED setting is set to True (default is True).

Settings

You should specify settings in your settings.py like this:

DJANGO_MAIL_ADMIN = {
 'BATCH_SIZE': 1000,
 'LOG_LEVEL': 1,
 }

Here’s a list of available settings:

Settings for outgoing email

	Setting

	Default

	Description

	BATCH_SIZE

	100

	How many email’s to send at a time. Used in mail.py/get_queued

	THREADS_PER_PROCESS

	5

	How many threads to use when sending emails

	DEFAULT_PRIORITY

	‘medium’

	Priority, which is assigned to new email if not given specifically

	LOG_LEVEL

	2

	Log level. 0 - log nothing, 1 - log errors, 2 - log errors and successors

	SENDING_ORDER

	[‘-priority’]

	Sending order for emails. If you want to send queued emails in FIFO order, set this to [‘created’]

Settings for incoming email

	Setting

	Default

	Description

	STRIP_UNALLOWED_MIMETYPES

	False

	Controls whether or not we remove mimetypes not specified in ALLOWED_MIMETYPES from the message prior to storage.

	ALLOWED_MIMETYPES

	[‘text/plain’, ‘text/html’]

	Has no effect if STRIP_UNALLOWED_MIMETYPES is set to False, otherwise - specifies allowed mimetypes that will not be stripped

	TEXT_STORED_MIMETYPES

	[‘text/plain’, ‘text/html’]

	A list of mimetypes that will remain stored in the text body of the message in the database.

	ALTERED_MESSAGE_HEADER

	‘X-Django-Mail-Admin-Altered-Message’

	Header to add to a message payload part in the event that the message cannot be reproduced accurately

	ATTACHMENT_INTERPOLATION_HEADER

	‘X-Django-Mail-Admin-Interpolate-Attachment’

	Header to add to the temporary ‘dehydrated’ message body in lieu of a non-text message payload component. The value of this header will be used to ‘rehydrate’ the message into a proper e-mail object in the event of a message instance’s get_email_object method being called.

	ATTACHMENT_UPLOAD_TO

	‘mail_admin_attachments/%Y/%m/%d/’

	Attachments will be saved to this location. Specifies the upload_to setting for the attachment FileField. For more info, consult Django docs [https://docs.djangoproject.com/en/dev/topics/http/file-uploads/#handling-uploaded-files-with-a-model]

	STORE_ORIGINAL_MESSAGE

	True

	Controls whether or not we store original messages in eml field

	COMPRESS_ORIGINAL_MESSAGE

	False

	Defines whether we compress the stored original message (.eml becomes .emg.gz)

	ORIGINAL_MESSAGE_COMPRESSION

	6

	Defines the level of original message compression, if enabled

	DEFAULT_CHARSET

	‘iso8859-1’

	The charset that is used by default when decoding emails

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/delneg/django_mail_admin/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

django mail admin could always use more documentation, whether as part of the
official django mail admin docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/delneg/django_mail_admin/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django_mail_admin for local development.

	Fork the django_mail_admin repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django_mail_admin.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django_mail_admin
$ cd django_mail_admin/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 django_mail_admin tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/delneg/django_mail_admin/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_django_mail_admin

Credits

Development Lead

	Denis Bobrov <delneg@yandex.ru>

Contributors

None yet. Why not be the first?

History

0.1.1 (2017-12-29)

	Added migrations.

0.1.0 (2017-12-29)

	First release on PyPI.

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to django mail admin’s documentation!

 		
 Django Mail Admin

 		
 Features

 		
 Dependencies

 		
 Documentation

 		
 Quickstart

 		
 Custom Email Backends

 		
 Optional requirements

 		
 FAQ

 		
 Running Tests

 		
 Credits

 		
 Usage

 		
 Template variables & tags

 		
 mail.send()

 		
 send_many()

 		
 Management Commands

 		
 Logging

 		
 Django Admin integration

 		
 Settings

 		
 Settings for outgoing email

 		
 Settings for incoming email

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.1 (2017-12-29)

 		
 0.1.0 (2017-12-29)

_static/up.png

